Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negativ Marks
Object	tive Question			
1	1	Commutation relation of J^2 with component J_z is	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ [J^2, J_Z] = 0 \end{array} $		
		$ \stackrel{A2}{:} [J^2, J_z] = \hbar J_z $		
		$\begin{bmatrix} A3 \\ \vdots \end{bmatrix} \begin{bmatrix} J^2, J_z \end{bmatrix} = i\hbar J_z$		
		$A4 [J^2, J_z] = J_+$		
21 : 4				
	tive Question	The photoelectric cut-off voltage in a certain experiment is 2 V. What is the maximum kinetic energy of photoelectrons emitted?	4.0	1.00
		A1 : 6.4 x 10 ⁻³⁴ J		
		A2 : 6.4 x 10 ⁻¹⁹ J		
		A3 3.2 x 10 ⁻¹⁹ J		
		A4 3.2 x 10 ⁻³⁴ J		
	tive Question 3	The quantum mechanical operator for the momentum of a particle moving in one dimension is given by	4.0	1.00
		$ \stackrel{\text{A1}}{:} i\hbar \frac{d}{dt} $		
		$\frac{A2}{1} - i\hbar \frac{d}{dt}$		
		$ \stackrel{\text{A3}}{:} i\hbar \frac{\partial}{\partial t} $		
		$ \stackrel{A4}{:} - i\hbar \frac{\partial}{\partial t} $		
	·			
	tive Question			
	4	The ratio of (h ² +k ² +l ²) values for allowed reflection from simple cubic crystal is	4.0	1.00

	A1 1:2:3:4:5:6:8:9:10:11:12		
	A2 1: 4:6:8:10:12:14:16:18:20		
	A3 3:4:8:11:12:16:19:20		
	A4 3:8:11:16:19:20		
Objective Q	Duagtion		
5 5	In the following Maxwell equation which is incorrect one (U is internal energy, S is entropy, T is temperature, P is pressure, V is volume, A is Helmholtz free energy, H is enthalpy, and G is Gibbs free energy).	4.0	1.00
	$ A2 \atop : dA = -SdT - PdV $		
	A3 dH = TdS + VdP		
	A4 dG = TdS + PdV		
Objective Q			
6		4.0	1.00
	A1 W/m ²		
	$\frac{A2}{E}$ Wm ²		
	A3 J/m ²		
	A4 J.m ²		
Objective Q			
7		4.0	1.00
	A1 Zero		
	A2 Unity:		
	A3 Greater than 1:		
	A4 Infinity:		
	A4 Infinity		

	ctive Question		4.0	1.00
3	8	How many electrons can be adjusted into three dimensional harmonic	4.0	1.00
		oscillator upto energy levels $rac{5}{2}\hbar\omega$		
		A1 6 electrons		
		A2 8 electrons		
		A3 12 electrons		
		A4 16 electrons		
Objec	ctive Question			
9	9	Identify the correct statement for the following vectors a=3i+2j and b=i+2j, where a, i and j are vectors	4.0	1.00
		A1 The vectors a and b are linearly independent:		
		A2 The vectors a and b are linearly dependent:		
		A3 The vectors a and b are orthogonal:		
		A4 The vectors a and b are normalized:		
Object	ctive Question			
	10	If three non intracting fermion have to be adjusted in first excited state of one dimensional	4.0	1.00
		harmonic oscillator of angular frequency ω , then total energy of the system is given by		
		$\frac{A1}{2}\hbar\omega$		
		$\frac{A^2}{1} = \frac{5}{2}\hbar\omega$		
		$\frac{A3}{1} = \frac{7}{2}\hbar\omega$		
		$\frac{A4}{:} \frac{9}{2}\hbar\omega$		
Ohie	ctive Question			
11	11	In the Debye model for a three dimensional crystal the internal energy U at low temperature is given by	4.0	1.00
		Al U∝T		

	A2 U \propto T ²		
	A3 U ∝ T³		
	A4 U ∝ T ⁴		
pjective Question			
12	The critical temperature T _c below which a boson to undergo Bose-Einstein condensation is	4.0	1.00
	$^{A1}_{:}$ $T_{c} \propto n^{2/3} k_{B}$		
	A2 $T_c \propto n^{2/3} m$		
	$^{A3}_{:}$ $T_{c} \propto n^{2/3}$		
	A4 $T_c \propto m k_B$		
ojective Question			
13	When work W is done on an ideal gas of N diatomic molecules in thermal isolation the temperature increases by:	4.0	1.00
	A1 W/2Nk		
	A2 W/3Nk		
	A3 2W/3Nk		
	A4 2W/5Nk :		
ojective Question			
14	In an antiferromagnet the susceptibility above the Neel temperature has the form	4.0	1.00
	$\begin{array}{ll} A1 & \chi = 2C(T + \Theta) \\ \vdots & \end{array}$		
	$ \begin{array}{ccc} A2 & \chi = \frac{2c}{(T+e)} \end{array} $		
	$\begin{array}{ll} A3 & \chi = C (2T - \Theta) \\ \vdots & \end{array}$		
	$\begin{array}{ccc} A4 & \chi = \frac{2c}{(2T-\Theta)} \\ \vdots \end{array}$		
jective Question		10	1.00
15	The wavelength of red helium-neon laser in air is 632 nm. What happens to its frequency in glass that has a refractive index of 1.50 ?		1.00

	A1 Increases by a factor of 1.5		
	A2 Decreases by a factor of 1.5		
	A3 Remains the same		
	A4 Decrease by a factor of 0.5		
Objective Ques	stion		
16 16	A cube has a constant electric potential V on its surface. If there are no charges inside the cube, the potential at the center of the cube is	4.0	1.00
	A1 V/8		
	A2 0		
	A3 _V :		
	A4 V/2		
Objective Ques	stion		
17 17	Photons in a cavity follows distribution function $[n(E)]$ is $(k = Boltzmann constant, T = temperature and E_f = Fermi energy)$	4.0	1.00
	$ \begin{array}{ll} \text{A1} \\ \text{:} & \text{n(E)} = \frac{1}{\frac{E}{e^{\overline{KT}} + 1}} \end{array} $		
	$^{A2}_{:}$ $n(E) = \frac{1}{\frac{E_f - E}{e \text{ kT}} + 1}$		
	$n(E) = \frac{1}{\frac{E}{e^{kT}} - 1}$		
	$ \begin{array}{ll} A4 & n(E) = \frac{1}{\frac{E+E_f}{e \text{ kT}} - 1} \end{array} $		
Objective Ques	stion		
18 18	On application of weak magnetic field the sodium line arising due to the transition ${}^2P_{3/2} \rightarrow {}^2S_{1/2}$ will split ideally into	4.0	1.00
	A1 2 components		
	A2 4 components		

	A3 6 components:		
	A4 10 components		
Objective Question	on		
19 19	The value of $\langle \Delta T \Delta P \rangle$ for a monoatomic ideal gas is	4.0	1.00
	$\begin{array}{ccc} A1 & \frac{3}{2} \frac{kT^2}{P} \end{array}$		
	$\stackrel{A2}{:} \frac{2}{3} \frac{kT^2}{V}$		
	$\begin{array}{ccc} A3 & \frac{3 \ kT}{2 \ P} \end{array}$		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Objective Question 20 20	The logic expression $\overline{A}BC+\overline{A}\overline{B}C+AB\overline{C}+A\overline{B}\overline{C}$ can be simplified to	4.0	1.00
	A1 A XOR C		
	A2 A AND C		
	A3 ₀ :		
	A4 1:		
Objective Question			
21 21	The de Broglie wavelength of a particle with mass 1g and velocity 100 m/s is	4.0	1.00
	A1 6.63 X 10 ⁻³⁵ m		
	A2 6.63 X 10 ⁻³⁴ m		
	A3 6.63 X 10 ⁻³³ m		
	A4 6.65 X 10 ⁻³⁵ m		
Objective Question	on		
22 22	Which of the following do not favour electrovalency?	4.0	1.00

	A1 Low charge on ions		
	A2 High charge on ions		
	A3 : Large cation and small anion		
	A4 Small cation and large anion		
Objective Question 23 23	The bond dissociation energy of gaseous H ₂ ,Cl ₂ and HCl are 104, 58 and 103 Kcal/mol respectively .Entropy of formation of HCL gas is	4.0	1.00
	A1 59 Kcal		
	A2 -265 Kcal :		
	A3 -22 Kcal :		
	A4 -29.5 Kcal		
Objective Question 24 24	Which of the following is not a colligative property?	4.0	1.00
	which of the following is not a configurate property.		
	A1 somotic pressure:		
	A2 Elevation in boiling point		
	A3 Vapour pressure		
	A4 Depression in freezing point		
Ohio tive Organian			
Objective Question 25 25	The Vant Hoff factor of 0.1M Ba(NO ₃) ₂ solution is 2.74.The degree of dissociation is	4.0	1.00
	A1 91.3%		
	A2 74%		
	A3 87%		

6	26	At 80°C, [H ₃ O] ⁺ concutration is equal to 1 X 10 ⁻⁶ mole/L. At same temperature the value of K _W is	4.0	1.00
		At 80°C, $[H_3O]$ concutration is equal to 1 X 10° mole/L. At same temperature the value of K_W is		
		A1 : 1 X 10 ⁻³		
		: 1 X 10 °		
		A2 1 X 10 ⁻⁶		
		: 1 X 10°°		
		A3 : 1 X 10 ⁻⁹		
		: 1 X 10 7		
		A4 1X 10 ⁻¹²		
		: 1X 10 ⁻¹²		
bje	ctive Question			
7	27	On adding few drops of dilute HCl to freshly precipitated ferric hydroxide, a red coloured colloidal solution is obtained .This	4.0	1.00
		phenomenon is known as		
		A1 Peptisation		
		A2 Dialysis		
		A3 Protective action		
		A4 Dissolution		
	ctive Question			
8	28	For an endothermic reaction, where ΔH represents the enthalpy of the reaction in KJ/mol, the	4.0	1.00
		minimum value for the energy of activation will be		
		Less than ΔH		
		42		
		A2 Zero		
		$^{\text{A3}}_{:}$ More than ΔH		
		$^{A4}_{:}$ Equal to ΔH		
Objec 9	ctive Question	Oxygen has an oxidation state of +2 in	4.0	1.00
		7,0		
		Al H ₂ O ₂		
		A2 H ₂ O		

		A3 OF ₂ :		
		A4 SO ₂		
Objec 30	ctive Question	A solution of 10 ml M/10 FeSO ₄ was titrated with KMnO ₄ solution in acidic medium .The amount of KMnO ₄ will be	4.0	1.00
		A1 5ml of 0.1M		
		A2 10ml of 0.1M		
		A3 10ml of 0.5M		
		A4 10ml of 0.02M		
Objec	ctive Question			
31	31	Gallium Arsenide is purified by	4.0	1.00
		A1 Froth – Floatation		
		A2 Van – Arkel method		
		A3 Zone – refining method :		
		A4 Electrolytic method		
Objec	ctive Question			
32	32	Which of the following has highest solubility product	4.0	1.00
		A1 KOH		
		A2 CsOH:		
		A3 LiOH:		
		A4 RbOH		
Objec	ctive Question	_		
33	33	Which of the following has no tin in its composition?	4.0	1.00
		Al Solder:		
		A2 Bronze		

		A3 Brass		
		A4 Tin Stone		
Thie	ctive Question			
34	34	Which ion is detected by Nessler's ragent?	4.0	1.00
		A1 NH ₄ ⁺		
		A2 MnO ₄ -		
		A ³ PO ₄ ³ -		
		A4 CrO ₄ ²⁻		
Obie	ctive Question			
35	35	Separation of petroleum into its components is mostly done by	4.0	1.00
		A1 Chromatography		
		A2 Sublimation :		
		A3 Distillation		
		A4 Fractional Distillation		
Ohie	ctive Question			
36	36	The alkene that exhibits geometrical isomerism is	4.0	1.00
		A1 Propene		
		A2 2- methylpropene:		
		A3 2-butene		
		A4 2-methyl- 2-butene		
	ctive Question			
37	37	When primary amines react with chloroform in ethanolic KOH then the product is	4.0	1.00
		A1 An isocyanide		

		A4 An alcohol		
	ctive Question			
38	38	O-hydroxytoluene and benzyl alcohol are	4.0	1.00
		A1 Position isomers		
		A2 Functional isomers		
		A3 Chain isomers		
		A4 None of these		
	ctive Question			
39	39	Treatment of ammonia with excess of ethylchloride will yield	4.0	1.00
		A1 Diethylamine		
		A2 Ethane:		
		A3 Tetraethylammonium chloride		
		A4 Methyl amine :		
Obje	ctive Question			
40	40	Of the following which is a step growth polymer?	4.0	1.00
		Al Bakelite		
		A2 Polyethylene :		
		A3 Teflon		
		A4 PVC		
	ctive Question			

		$ \stackrel{\text{A1}}{:} \frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} = 1 $		
		$\frac{A^2}{16} \frac{x^2}{16} - \frac{y^2}{9} = 1$		
		A4 None of these		
Object	ive Question			
42	42	The value of the integral, $\int_{1}^{2} 3^{x} dx$ is	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ \hline \log 8 \end{array} $		
		$ \begin{array}{c} A2 \\ \vdots \\ \hline{\log 3} \end{array} $		
		$\stackrel{A3}{:} \frac{6}{\log 6}$		
		$\stackrel{A4}{:} \frac{6}{\log 3}$		
Ohioat	ive Question			
	43	If y is a twice differentiable function and $x \cos y + y \cos x = \pi$, then y" =	4.0	1.00
		$\stackrel{A1}{:}$ π		
		$A2 - \pi$:		
		A3 0		
		A4 1 :		
Object	rive Question			
	44	If $y = a \ln x + bx^2 + x$ has its extremum values at $x = -1$ and $x = 2$ then	4.0	1.00
		A1: $a = 2, b = -1$		

		$\begin{vmatrix} A2 \\ \vdots \\ a = 2, b = -1/2 \end{vmatrix}$		
		A3 a = -2, b = 1/2		
		A4 None of these :		
Obiec	ctive Question			
45	45	Cards are drawn one by one without replacement from a pack of 52 cards. The probability that 10 cards will precede the first ace is	4.0	1.00
		A1 251/1456 :		
		A2 164/4165		
		A3 451/881		
		A4 52/5427 :		
Object	ctive Question			
46	46	If the centroid of the triangle formed by points (a, b) , (b, c) and (c, a) is at the origin, then $a^3 + b^3 + c^3 =$	4.0	1.00
		$\begin{bmatrix} A1 \\ \vdots \end{bmatrix}$		
		$A2 \atop : abc$		
		$\begin{bmatrix} A3 \\ \vdots \end{bmatrix}$ $3abc$		
		A4 -3abc		
Object	ctive Question			
47	47	The value of the integral, $\int_{0}^{1} (x^2 + 3) dx$	4.0	1.00
		A1 10/7		
		A2 10/9		
		A3 10/21		
		A4 10/3		
Obiec	ctive Question			

48 48	If vector $\vec{a} = \vec{i} + \vec{j} - \vec{k}$; $\vec{b} = \vec{i} - \vec{j} + \vec{k}$; and $\vec{c} = \vec{i} - \vec{j} - \vec{k}$, then the value of $\vec{a} \times (\vec{b} \times \vec{c})$	4.0	1.00
	$ \stackrel{\text{A1}}{:} \vec{i} - \vec{j} + \vec{k} $		
	$\stackrel{A2}{:} 2\vec{i} - 2\vec{j}$		
	$\begin{array}{c} A3 \\ \vdots \end{array} 3\vec{i} - \vec{j} + \vec{k} \end{array}$		
	$\stackrel{\text{A4}}{:} 2\vec{i} + 2\vec{j} - \vec{k}$		
Objective Questi 49 49	If the matrix A is singular then,	4.0	1.00
	A1 Its determinant value is infinite		
	A2 Its determinant value is zero		
	A3 Its determinant value cannot be obtained:		
	$A4 : A = A^{-1}$		
01: (: 0 (:			
Objective Questi 50 50	The value of $\sum_{r=1}^{n} \frac{{}^{n}P_{r}}{r!}$ is	4.0	1.00
	$^{A1}_{:} 2^{n} - 1$		
	A2 2 ⁿ		
	A3 2 ⁿ⁻¹		
	$^{A4}_{:} 2^{n} + 1$		
Objective Questi	ion.		
51 51	A set of elements is said to be Group if it has	4.0	1.00
	A1 Closure property		
	A2 Associative :		
	A3 identity and inverse		

	A4 All of these		
Objective Que	stion		
52 52	What is the missing number in the series: 1, 1, 2, 6, 24, 120, ?, 5040	4.0	1.00
	A1 360		
	A2 720		
	A3 1080		
	A4 1440 :		
bjective Que	stion		
53	Slope of a line passing parallel to y axis is	4.0	1.00
	A2 ∞ :		
	A3 :		
	A4 None of these		
Objective Que	stion		
4 54	$\int_{-\pi/2}^{\pi/2} \sin x dx = ?$	4.0	1.00
	A1 _{1/2} :		
	$\begin{array}{c} A2 \\ \vdots \\ \hline 4 \end{array}$		
	A3 -1/2		
	A4 0 :		
Objective Que	stion		
5 55	Integrating factor of differential equation, $\cos x \frac{dy}{dx} + y \sin x = 1$ is	4.0	1.00
	A1 : cosx		

	A2 tanx	
	A3 sinx	
	A4 secx	
Objective Question		
56 56	If $\cos A = \frac{3}{4}$, then what is $32\sin(A/2)\sin(5A/2)$?	4.0 1.00
	A1 7 :	
	A2 8 :	
	A3 11	
	A4 15 :	
Objective Question	on	
57 57	Gamma function $\Gamma(n)$ is defined for $n>0$ as	4.0 1.00
	$ \begin{array}{ccc} \text{A1} & \infty \\ \vdots & \int_{0}^{\infty} e^{-x} x^{n+1} dx \end{array} $	
	$ \stackrel{\text{A2}}{:} \int_{0}^{\infty} e^{-x} x^{n-1} dx $	
	$ \begin{array}{ccc} A3 & \int_{0}^{\infty} e^{x} x^{n-1} dx \end{array} $	
	$\int_{0}^{A4} e^{-x} x^{2n-1} dx$	
Objective Question	on	
58 58	The table gives the values of $f(x)$ as	4.0 1.00
	f(x) 1 0.8 0.5	
	The value of $\int_{0}^{1} f(x)dx$ by Trapezoidal rule is	
	A1 0.775	

ı			II	II
		A2 0.715		
		A3 0.875		
		A4 0.975		
Obiaa	tive Question			
59	59	A sequence is defined by the recurrence relation $u_{n+1} = au_n + 3$ with $u_0 = 5$. Find an expression, in terms of a , for u_2 .	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ 5a^2 + 3a + 3 \end{array} $		
		A2 10a + 30		
		$\begin{array}{c} A3 \\ \vdots \\ 5a^2 + 15 \end{array}$		
		$ \begin{vmatrix} A4 & 2a+3 \\ \vdots & 2a+3 \end{vmatrix} $		
Objec	tive Question			
50	60	If the pair of angular bisectors of the lines $y^2 - 3xy + 2x^2 - 4x + 6y - 16 = 0$ forms a triangle with the line $3x + 4y = 12$, then the orthocentre of triangle is given by	4.0	1.00
		A1 (5, 8)		
		A2 (12, 10)		
		A3 (10, 12)		
		A4 (8, 5)		
Ohiec	tive Question			
51	61	Which of the following is correct?	4.0	1.00
		A1 Replication starts at a single origin:		
		A2 Replication is bidirectional		
		A 2		
		Replication is semi conservative		

Objective Que	The protein, produced by B cells that binds to a specific antigen is	4.0	1.00
	The protein, produced by B cens that onlds to a specific anagen is		
	Al phogocyte		
	A1 phagocyte		
	A2 leukocyte		
	A3 vaccine		
	A4		
	A4 antibody		
Objective Que	stion		
63 63	What is the normal role of restriction endonucleases in bacterial cells?	4.0	1.00
	A1 To degrade the bacterial chromosome into small pieces during replication		
	42		
	A2 To degrade invading phage DNA		
	A3 To the DNA is a Contract		
	A3 To produce RNA primers for replication		
	A4 All of these		
	·		
	·		
Objective Que	DNA differs from RNA in	4.0	1.00
	DIVA differs from KIVA in		1.00
	Al - u		
	A1 Presence of deoxyribose sugar		
	A2 Presence of thymine base		
	:		
	A3 Property of replication		
	A4		
	A4 All of these		
Objective Que	stion		
65	Formation of mRNA from DNA is called	4.0	1.00
	A1 Transformation		
	: Transformation :		
	A2 Transduction		
	II A 3		
	A3 Traslation		
	: Traslation		
	A3 Traslation : A4 Transcription		

Objectiv	ve Question			
66	66	A plasmid	4.0	1.00
		A1 is a circular DNA molecule		
		A2 always contains an origin of replication		
		A3 usually contains one or more restriction sites		
		A4 all of these		
Objectiv	ve Question			
67	67	Beer's Law states that	4.0	1.00
		A1 absorbance is proportional to both the path length and concentration of the absorbing species		
		A2 absorbance is proportional to the log of the concentration of the absorbing species		
		A3 absorbance is equal to P _o / P		
		A4 none of these		
Objectiv	ive Question			
	68	NADP ⁺ is reduced to NADPH during	4.0	1.00
		Al light dependent reactions		
		A2 photorespiration		
		A3 calvincylcle :		
		A4 none of these		
Objectiv	ve Question			
59 <i>(</i>	69	Which of the following comes under the category of cell surface receptor?	4.0	1.00
		A1 Enzyme linked receptors		
		A2 Ion-channel linked receptors		
		A3 G protein linked receptors		

		A4 All of these:		
	tive Question			
70	70	The chemical, typically released by the body in an allergic response is	4.0	1.00
		A1 histamine		
		A2 allergens		
		A3 antihistamines		
		A4 perforins		
Object	tive Question	JI		
71	71	Maltose is composed of	4.0	1.00
		A1 Galactose + Glucose		
		A2 Glucose + Fructose		
		A3 Glucose + Glucose		
		A4 Galactose + Ribose		
hian	tive Question			
72	72	Which of the following techniques are used in Transmission Electron Microscopy (TEM) for examining cellular structure?	4.0	1.00
		A1 Negative-Staining		
		A2 Shadow Casting:		
		A3 Ultrathin Sectioning		
		A4 All of these		
hier	tive Question			
73	73	Glycolysis can occur in	4.0	1.00
		A1 aerobic cells		
		A2 anaerobic cells		

	South aerobic and anaerobic cells		
	A4 neither aerobic and anaerobic cells		
Objective Questi		4.0	1.00
	Streptomycin is produced by which of the following organisms?	7.0	1.00
	A1 Stretomycesnoursei		
	A2 Streptomyces nodosus :		
	A3 Streptomyces fradiae		
	A4 Streptomyces griseus :		
Objective Questi	ion		
75 75	The rate-determining step of MichaelisMenten kinetics is	4.0	1.00
	A1 complex formation step		
	A2 complex dissociation step to produce product		
	A3 product formation step		
	A4 Both complex formation step and product formation step :		
Objective Quest	ion		
76 76	Isoschizomers recognize	4.0	1.00
	A1 same recognition sequence but different recognition site		
	A2 same recognition site and recognition sequence:		
	A3 same recognition site and different recognition sequence :		
	A4 different recognition site and different recognition sequence		
Objective Quest	ion		
77 77	In gel electrophoresis, DNA molecules migrate from ends of the gel.	4.0	1.00
	A1 negative to positive		
	A2 basic to acidic		

	A3 acidic to basic :		
	A4 positive to negative		
Objective Quest			
78 78	In order to insert a foreign gene into a plasmid, both must	4.0	1.00
	A1 have identical DNA sequences		
	A2 originate from the same type of cell		
	A3 be cut by the same restriction enzyme :		
	A4 be of the same length :		
Objective Quest	tion		
79 79	Oxidation of 3 molecules of glucose by pentose phosphate pathway results in the production of	4.0	1.00
	A1 3 molecules of pentose, 6 molecules of NADPH and 3 molecules of CO ₂		
	A2 6 molecules of pentose, 6 molecules of NADPH and 3 molecules of CO ₂ :		
	A3 3 molecules of pentose, 3 molecules of NADPH and 3 molecules of CO ₂		
	A4 6 molecules of pentose, 3 molecules of NADPH and 6 molecules of CO ₂ :		
Objective Ques	tion		
80 80	Which of the following statements is false?	4.0	1.00
	$^{\mathrm{A1}}$ The reaction tends to go in the forward direction if ΔG is large and positive		
	$^{\mathrm{A2}}$ The reaction tends to move in the backward direction if ΔG is large and negative		
	A3 The system is at equilibrium if $\Delta G = 0$		
	The reaction tends to move in the backward direction if ΔG is large and positive		
Objective Ques			
81 81	A form of failure that occurs in the structure when subjected to cycles of alternating stress is known as	4.0	1.00
	Al impact		

		A2 fracture toughness:		
		A3 fatigue :		
		A4 creep		
Obje	ctive Question			
32	82	In the case of extrinsic semiconductors, the electrical conductivity depends on	4.0	1.00
		A1 carrier concentration and mobility		
		A2 temperature		
		A3 bonding:		
		A4 carrier concentration, mobility, temperature and impurity content:		
	ctive Question			
33	83	The mean free path for the electronic conduction is higher in	4.0	1.00
		A1 nanowire		
		A2 quantum dots		
		A3 nanoparticle		
		A4 nanotube		
 Obje	ctive Question			
84	84	The Wiedemann-Franz law governs the	4.0	1.00
		A1 optical properties of thin films		
		A2 thermal conductivity of metals		
		A3 mobility of charge carriers:		
		A4 deformation in plastics		
—— Objec	ctive Question			
85	85	A reduction of grain size in a polycrystalline material	4.0	1.00

		A1 decreases yield strength and corrosion resistance		
		A2 decreases yield strength but increases corrosion resistance		
		A3 increases yield strength and corrosion resistance.		
		A4 increases yield strength but decreases corrosion resistance		
Object	ctive Question			
86	86	The development of water repellant coating owes its property to	4.0	1.00
		A1 elasticity		
		A2 viscoelasticity		
		A3 surface tension		
		A4 surface imperfection :		
Object	ctive Question			
87	87	The dependence of Fermi level (E _F) for a solid having a linear dimension (L) can be given represented as	4.0	1.00
		A1 independent of L		
		A2 L		
		A3 _{1/L} :		
		A4 1/L ²		
<u></u>				
Object 88	etive Question 88	For extensive solid solubility, as per Hume-Rothery rule, the difference in atomic diameter between solute and solvent atoms should not be more than	4.0	1.00
		A1 30%		
		A2 15%		
		A3 _{1%}		
		A4 0%		

89	When FCC iron and BCC iron coexist in equilibrium, the number of degrees of freedom is given by	4.0	1.00
	A 1		
	A1 -1		
	$\begin{bmatrix} A2 & 0 \\ \vdots & \ddots & \ddots \end{bmatrix}$		
	A3 1 :		
	A4 2 :		
Objective Questi		4.0	1.00
	The contact angle at which a liquid does not completely wet a solid surface is	4.0	1.00
	A1 _{180°}		
	A2 90°		
	A3 45°		
	A4 0° :		
Objective Questi	on .		
91 91	If T_m is the melting temperature, the grain growth in a solid occurs in the temperature range of	4.0	1.00
91 91		4.0	1.00
91 91	If T_m is the melting temperature, the grain growth in a solid occurs in the temperature range of A1 higher than T_m :	4.0	1.00
91 91	A1 higher than T_m :	4.0	1.00
91 91		4.0	1.00
91 91	A1 higher than T_m : A2 $0.1 - 0.2 T_m$:	4.0	1.00
91	A1 higher than T_m :	4.0	1.00
91 91	A1 higher than T_m : A2 $0.1 - 0.2 T_m$: A3 $< 0.4 T_m$:	4.0	1.00
91	A1 higher than T_m : A2 $0.1 - 0.2 T_m$:	4.0	1.00
	A1 higher than T_m : A2 $0.1 - 0.2 T_m$: A3 $< 0.4 T_m$: A4 0.4 -1.0 T_m :	4.0	1.00
Objective Questi	A1 higher than T_m : A2 $0.1 - 0.2 T_m$: A3 $< 0.4 T_m$: A4 $0.4 - 1.0 T_m$:	4.0	1.00
Objective Questi	A1 higher than T_m : A2 $0.1 - 0.2 T_m$: A3 $< 0.4 T_m$: A4 0.4 -1.0 T_m :		
Objective Questi	A1 higher than T_m : A2 $0.1 - 0.2 T_m$: A3 $< 0.4 T_m$: A4 $0.4 - 1.0 T_m$:		
Objective Questi	A1 higher than T_m $A2 = 0.1 - 0.2 T_m$ $A3 < 0.4 T_m$ $A4 = 0.4 - 1.0 T_m$ The materials such as diamond are brittle as		
Objective Questi	A1 higher than T_m : A2 $0.1-0.2 T_m$: A3 $< 0.4 T_m$: A4 $0.4-1.0 T_m$: The materials such as diamond are brittle as A1 they possess few dislocations:		
Objective Questi	A1 higher than T_m $A2 = 0.1 - 0.2 T_m$ $A3 < 0.4 T_m$ $A4 = 0.4 - 1.0 T_m$ The materials such as diamond are brittle as		
Objective Questi	Al higher than T_m : A2 $0.1 - 0.2 T_m$ A3 $< 0.4 T_m$ A4 $0.4 - 1.0 T_m$ The materials such as diamond are brittle as A1 they possess few dislocations A2 they do not have any dislocations		
Objective Questi	A1 higher than T_m : A2 $0.1-0.2 T_m$: A3 $< 0.4 T_m$: A4 $0.4-1.0 T_m$: The materials such as diamond are brittle as A1 they possess few dislocations:		

	:		
Objective Question			
93 93	The proper order of coordination number in BCC, FCC and HCP unit cells is	4.0	1.00
	A1 12, 8, 6		
	: 12, 0, 0		
	^2		
	A2 8, 12, 12		
	A3 6, 8, 12		
	A4		
	A4 12, 8, 24 :		
Objective Question		1	112 -
94 94	Among the following, MnO possess	4.0	1.00
	A1		
	A1 ferromagnetism		
	A2 paramagnetism		
	A3		
	A3 antiferromagnetism		
	A4 ferrimagnetism		
Objective Question			
95 95	The rate of the reaction is related to activation energy (Ea), gas constant (R) and temperature (T) by	4.0	1.00
	$A1 \exp(-2E_a/RT)$		
	$A^2 \exp (2E_a/RT)$		
	: exp (2L _{a'} K1)		
	$A3 \exp (E_a/RT)$:		
	$A4 \exp(-E_{\alpha}/RT)$		
Objective Question			
96 96	The phenomenon of electron cloud oscillation stimulated by electromagnetic radiation, primarily by the nano metallic particle	4.0	1.00
	is known as		
	A1 X-ray photoelectron emission		
	A2 fluorescence		
	·		
	A3 surface plasmon resonance		

	\parallel :		
	A4 Stoke's effect		
Objective Question			
97 97	For an elastic material having the Poisson's ratio of 0.4, the ratio of modulus of rigidity to Young's modulus is equal to	4.0	1.00
	A1 0.36		
	A2 0.75		
	A3 1		
	A4 1.5		
Objective Question			
98 98	As per Griffith's equation, the fracture stress is proportional to crack length (c) as	4.0	1.00
	Al c		
	A2 1/c		
	A3 1/√c		
	A4 1/c ²		
Objective Question			
99 99	Among the following dielectric materials, which has the highest dielectric constant	4.0	1.00
	Al nafion		
	A2 mica		
	A3 PVC		
	A4 polyethylene		
Objective Question			
100 100	Turbulent flow occurs when the Reynolds number becomes or higher.	4.0	1.00
	A1 4 :		
	A2 40		

	A3 400		
	A4 4000		